Efficient isogeometric thin shell formulations for soft biological materials
نویسندگان
چکیده
This paper presents three different constitutive approaches to model thin rotation-free shells based on the Kirchhoff-Love hypothesis. One approach is based on numerical integration through the shell thickness while the other two approaches do not need any numerical integration and so they are computationally more efficient. The formulation is designed for large deformations and allows for geometrical and material nonlinearities, which makes it very suitable for the modeling of soft tissues. Furthermore, six different isotropic and anisotropic material models, which are commonly used to model soft biological materials, are examined for the three proposed constitutive approaches. Following an isogeometric approach, NURBS-based finite elements are used for the discretization of the shell surface. Several numerical examples are investigated to demonstrate the capabilities of the formulation. Those include the contact simulation during balloon angioplasty.
منابع مشابه
Isogeometric Kirchhoff-Love shell formulations for biological membranes.
Computational modeling of thin biological membranes can aid the design of better medical devices. Remarkable biological membranes include skin, alveoli, blood vessels, and heart valves. Isogeometric analysis is ideally suited for biological membranes since it inherently satisfies the C1-requirement for Kirchhoff-Love kinematics. Yet, current isogeometric shell formulations are mainly focused on...
متن کاملIsogeometric Fe Analysis of Complex Thin-walled Structures
Isogeometric analysis, as a special field of the finite element method (FEM) which integrates geometric and finite element mesh modelling, is one of the promising directions of FEM development. The paper presents a concept of isogeometric FEM analysis of thin-walled structures based on the Kirchhoff-Love shell formulation and NURBS as basis functions. The basic properties of isogeometric shell ...
متن کاملIsogeometric analysis of thin Reissner-Mindlin plates and shells: Locking phenomena and generalized local $\bar{B}$ method
We propose a generalized local B̄ framework, addressing locking in degenerated Reissner-Mindlin plate and shell formulations in the context of isogeometric analysis. Parasitic strain components are projected onto the physical space locally, i.e. at the element level, using a least-squares approach. The formulation is general and allows the flexible utilization of basis functions of different ord...
متن کاملAnalysis of thin plates by a combination of isogeometric analysis and the Lagrange multiplier approach
The isogeometric analysis is increasingly used in various engineering problems. It is based on Non-Uniform Rational B-Splines (NURBS) basis function applied for the solution field approximation and the geometry description. One of the major concerns with this method is finding an efficient approach to impose essential boundary conditions, especially for inhomogeneous boundaries. The main contri...
متن کاملIsogeometric shape optimisation of shell structures using multiresolution subdivision surfaces
We introduce the isogeometric shape optimisation of thin shell structures using subdivision surfaces. Both triangular Loop and quadrilateral Catmull-Clark subdivision schemes are considered for geometry modelling and finite element analysis. A gradientbased shape optimisation technique is implemented to minimise compliance, i.e. to maximise stiffness. Different control meshes describing the sam...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomechanics and modeling in mechanobiology
دوره 16 5 شماره
صفحات -
تاریخ انتشار 2017